
A	Case	Study:	Space	Invaders

CS	5010	Program	Design	Paradigms
"Bootcamp"
Lesson	9.2

1
©	Mitchell	Wand,	2012-2015
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Goals	of	this	lesson

• Use	the	idea	of	an	interface	to	write	a	small		
interactive	system

2

Let’s	see	a	demo!

3

Let’s	design	a	system!

• We	will	have	some	things	living	on	a	canvas.
• We’ll	call	these	things	widgets.		We’ll	
represent	widgets	as	objects.

• First	step	is	to	figure	out	what	messages	these	
objects	should	respond	to.

4

System	Design	(2)

• big-bang	will	call	our	world-after-XX	functions
• Each	world-after-XX	function	will	send	an	
appropriate	message	to	each	widget.

• We	can	use	our	previous	experience	with	big-
bang	to	guide	us.

5

System	Architecture

6

run

world-after-
tick

world-after-
key-event

world-after-
mouse-event

world-to-scene

widget

widget

widget

widget

function
calls

etc.

method	calls	using	
Widget<%>	
interface

What	messages	should	a	widget	
respond	to?

• Our	big-bang	functions	will	send	each	widget	
the	appropriate	message	at	each	event.

• Two	easy	ones:
– (send	widget1	after-tick)	should	return	the	state	
of	widget1 after	a	tick				

– (send	widget1	after-key-event	kev)	should	return	
the	state	of	widget1 after	the	given	key	event

7

What	about	display?

• We	discovered	that	the	right	way	to	write	
display	code	was	to	write	add-to-scene	.

• So	we’ll	say:
– (send	widget1	add-scene	s)		returns	a	Scene	like	s,	
but	with	widget1 painted	on	it.

8

What	about	mouse	events?

• We	wrote	a	bunch	of	things	like

(define (rect-after-mouse-event r mx my mev)
(cond

[(mouse=? mev "button-down") (rect-after-button-down r mx my)]
[(mouse=? mev "drag") (rect-after-drag r mx my)]
[(mouse=? mev "button-up") (rect-after-button-up r)]
[else r]))

9

Let’s	only	do	this	once…

• We’ll	put	three	methods	in	our	interface:
– after-button-down
– after-button-up
– after-drag

• It	will	be	the	responsibility	of	world-after-mouse-
event to	do	cases	on	the	mouse	event	and	send	
the	appropriate	message	to	each	widget.

– this	is	sometimes	called	“demultiplexing”.

10

Our	Widget<%>	interface
;; Every object that lives in the world
;; must implement the Widget<%> interface.

(define Widget<%>
(interface ()

; -> Widget<%>
; GIVEN: no arguments
; RETURNS: the state of this object
; that should follow after a tick
after-tick

; Integer Integer -> Widget<%>
; GIVEN: x and y coordinates for a location
; RETURNS: the state of this object
; that should follow the specified
; mouse event at the given location.
after-button-down
after-button-up
after-drag

; KeyEvent -> Widget<%>
; GIVEN: a key event
; RETURNS: the state of this object
; that should follow after the given
; key event
after-key-event

; Scene -> Scene
; GIVEN: a scene
; RETURNS: a scene like the given one,
; but with this object painted on it.
add-to-scene
))

11

; Integer Integer -> Widget<%>
; GIVEN: x and y coordinates for a location
; RETURNS: the state of this object
; that should follow the specified
; mouse event at the given location.
after-button-down
after-button-up
after-drag

Some	vocabulary
• We	wrote:

• this	object	:	this always	refers	to	the	object	that	receives	the	message
• the	specified	mouse	event:	“specified”	refers	to	which	of	the	three	functions	in	this	

group	we	are	talking	about	(e.g.,	 after-button-down	talks	about	what	should	follow	a	
button-down	event)

• the	given	location:	“given”	always	refers	to	the	arguments	of	the	method	call,		e.g.	
(send	obj after-button-down	10	20)	refers	to	a	button-down	event	at	(10,	20)

• We	will	use	this	terminology	consistently	in	our	purpose	statements	when	referring	to	
different	quantities.

12

Let’s	look	at	the	code	for	the	world
;; Data Definitions

;; A Time is a NonNegative Integer

;; A Widget is an object whose class
;; implements Widget<%>

(define-struct world-state
(objects time))

;; A WorldState is a
;; (make-world-state
;; ListOfWidget Time)

;; INTERP: (make-world-state lst t)
;; represents a world containing
;; the widgets in lst at time t
;; (in ticks).

; run : PosReal -> WorldState
; GIVEN: a frame rate, in secs/tick
; EFFECT: runs an initial world at
; the given frame rate
; RETURNS: the final state of the
; world
; STRATEGY: deliver events to the
; event handler functions
(define (run rate)
(big-bang (initial-world)
(on-tick world-after-tick rate)
(on-draw world-to-scene)
(on-key world-after-key-event)
(on-mouse

world-after-mouse-event)))

13

Nothing	exciting	here.		We	put	a	
time	component	 in	the	worldstate
to	illustrate	that	the	worldstate
might		have	more	things	in	it	than	

just	the	list	of	widgets.

world-after-tick
;; world-after-tick : WorldState -> WorldState
;; Use HOF map on the Widgets in w
(define (world-after-tick w)

(let ((objs (world-state-objects w))
(t (world-state-time w)))

(make-world-state
(map

(lambda (obj) (send obj after-tick))
objs)

(+ 1 t))))

14

On	a	tick,	the	world	sends	an	after-
tick message	to	each	of	the	widgets,	
and	assembles	the	results	with	map

to	get	the	new	list	of	widgets.
It	also	increments	its	timer.

I used	let instead	of	
local.	You	can	use	either	

one.

world-to-scene
;; world-to-scene : WorldState -> Scene
;; Use HOF foldr on the Widgets in w
(define (world-to-scene w)
(foldr
;; Widget Scene -> Scene
(lambda (obj scene)

(send obj add-to-scene scene))
EMPTY-CANVAS
(world-state-widgets w)))

15

world-to-scene is	similar,	except	it	does	a	
foldr to	assemble	the	scene.

world-to-mouse-event
;; world-after-mouse-event
;; : WorldState Nat Nat MouseEvent -> WorldState
;; STRATEGY: Cases on mev
(define (world-after-mouse-event w mx my mev)
(cond
[(mouse=? mev "button-down")
(world-after-button-down w mx my)]
[(mouse=? mev "drag")
(world-after-drag w mx my)]
[(mouse=? mev "button-up")
(world-after-button-up w mx my)]
[else w]))

16

world-after-mouse-eventdecides	which	
mouse	event	it	is	looking	 at,	and	calls	
the	appropriate	specialized	function.	 	

See	how	we	follow	the	data	definitions!

world-after-button-down
; WorldState Nat Nat -> WorldState
; STRATEGY: Use HOF map on the widgets in w
(define (world-after-button-down w mx my)
(let ((objs (world-state-widgets w))

(t (world-state-time w)))
(make-world-state

(map
(lambda (obj)
(send obj after-button-down mx my))

objs)
t)))

17

world-after-button-down follows	the	
pattern	of	world-after-tick.

world-after-button-upand	world-after-
drag are	similar.

world-after-key-event
;; world-after-key-event : WorldState KeyEvent -> WorldState
;; STRATEGY: Cases on kev
;; "b" and "h" create new bomb and new helicopter;
;; other keystrokes are passed on to the widgets in the world.

(define (world-after-key-event w kev)
(let ((objs (world-state-widgets w))

(t (world-state-time w)))
(cond
[(key=? kev NEW-BOMB-EVENT)
(make-world-state
(cons (new-bomb t) objs)
t)]

[(key=? kev NEW-HELI-EVENT)
(make-world-state
(cons (new-heli) objs)
t)]

[else
(make-world-state
(map
(lambda (obj) (send obj after-key-event kev))
(world-state-widgets w))
t)])))

18

world-after-key-event
responds	 to	“b”	and	“h”	

itself	to	add	new	widgets	to	
the	world.		Other	key	

events	are	passed	to	the	
objects.

Next	we’ll	build	some	widgets

• We	have	two	classes	of	widgets:		Bombs	and	
Helicopters

• Bombs	drop	from	the	top	of	the	screen.		They	
are	not	draggable.

• Helicopters	rise	from	the	bottom	of	the	
screen.	They	are	selectable	and	draggable,	 like	
the	rectangles	in	our	screensavers.

19

We’ll	start	with	Bomb%
;; A Bomb is a (new Bomb% [x Integer][y Integer])
;; A Bomb represents a bomb.
;; in this version, the bomb just falls.

;; Handy to have a functional interface.
;; We don't use t, now but we might do so later.
(define (new-bomb t)
(new Bomb% [x BOMB-INITIAL-X][y BOMB-INITIAL-Y]))

(define Bomb%
(class* object% (Widget<%>)
(init-field x y) ; the bomb's x and y position

;; private data for objects of this class.
;; these can depend on the init-fields.

;; image for displaying the bomb
(field [BOMB-IMG (circle 10 "solid" "red")])
;; the bomb's speed, in pixels/tick
(field [BOMB-SPEED 8])

(super-new)

;; after-tick : -> Bomb
;; RETURNS: A bomb like this one, but as it should
;; be after a tick
;; DETAILS: the bomb moves vertically by BOMB-SPEED
(define/public (after-tick)
(new Bomb% [x x][y (+ y BOMB-SPEED)]))

;; to-scene : Scene -> Scene
;; RETURNS: a scene like the given one, but with
;; this bomb painted on it.
(define/public (add-to-scene scene)
(place-image BOMB-IMG x y scene))

;; the bomb doesn't have any other behaviors, so it
;; responds to each of these messages by returning
;; itself, unchanged.
(define/public (after-button-down mx my) this)
(define/public (after-drag mx my) this)
(define/public (after-button-up mx my) this)
(define/public (after-key-event kev) this)

;; test methods, to test; the bomb state.
(define/public (for-test:x) x)
(define/public (for-test:y) y)

))

20

after-tick returns	a	new	
bomb	in	the	right	location.		
Since	Bomb%	implements	
Widget<%>,	the	value	
returned	 is	a	Widget,	so	
this	method	satisfies	the	
contract	given	for	it	in	the	
Widget<%>	interface.

for-test:x and	for-test:y are	
NOT	in	the		Widget<%>		
interface.		They	are	added	 	
here	for	testing	purposes	

ONLY.

…and	on	to	Heli%
;; A Heli is a (new Heli% [x Integer][y Integer]
;; [selected? Boolean]
;; [saved-mx Integer]
;; [saved-my Integer])
;; A Heli represents a heli.
(define Heli%
(class* object% (Widget<%>)

;; the init-fields are the values that may vary
;; from one heli to the next.

; the x and y position of the center of the heli
(init-field x y)

; is the heli selected? Default is false.
(init-field [selected? false])

;; if the heli is selected, the position of
;; the last button-down event inside the heli,
;; relative to the heli's center. Else any value.
(init-field [saved-mx 0] [saved-my 0])

;; private data for objects of this class.
;; these can depend on the init-fields.

; the heli's radius
(field [r 15])
; image for displaying the heli
(field [HELI-IMG (circle r "outline" "blue")])
; the heli's speed, in pixels/tick.
; negative means that it moves upwards.
(field [HELISPEED -4])

(super-new)

;; after-tick : -> Heli
;; RETURNS: A heli like this one, but as it should
;; be after a tick.
;; DETAILS: a selected heli doesn't move. An
;; unselected heli moves vertically by HELISPEED.
;; STRATEGY: Cases on selected?
(define/public (after-tick)
(if selected?
this
(new Heli%
[x x]
[y (+ y HELISPEED)]
[selected? selected?]
[saved-mx saved-mx]
[saved-my saved-my])))

21

Note	how	we’ve	put	an	interpretation	on	each	of	
the	fields	of	the	object.			This	is	just	like	what	we	
did	when	we	put	an	interpretation	on	each	of	the	

fields	of	a	struct.

Heli%	(2)
;; after-key-event : KeyEvent -> Heli
;; RETURNS: A heli like this one, but as it should
;; be after the given key event.
;; DETAILS: a heli ignores key events
(define/public (after-key-event kev)
this)

;; after-button-down : Integer Integer -> Heli
;; GIVEN: the location of a button-down event
;; RETURNS: A heli like this one, but as it should
;; be after a button-down event at the given
;; location.
;; STRATEGY: Cases on whether the event is in the
;; helicopter
(define/public (after-button-down mx my)
(if (in-heli? mx my)
(new Heli%
[x x][y y]
[selected? true]
[saved-mx (- mx x)]
[saved-my (- my y)])

this))

;; after-button-up : Integer Integer -> Heli
;; GIVEN: the location of a button-up event
;; RETURNS: A heli like this one, but as it should
;; be after a button-up event at the given
;; location.
;; DETAILS: If the heli is selected, then unselect
;; it, otherwise ignore.
;; STRATEGY: Cases on whether the event is in the
;; helicopter.
(define/public (after-button-up mx my)
...etc...)

;; after-drag : Integer Integer -> Heli
;; GIVEN: the location of a drag event
;; ...etc...
(define/public (after-drag mx my) ...etc...)

;; to-scene : Scene -> Scene
;; RETURNS: a scene like the given one, but with
;; this heli painted on it.
(define/public (add-to-scene scene)
(place-image HELI-IMG x y scene))

22

Heli%	(3)
;; in-heli? : Integer Integer -> Boolean

;; GIVEN: a location on the canvas
;; RETURNS: true iff the location is inside this
;; heli.

(define (in-heli? other-x other-y)
(<= (+ (sqr (- x other-x)) (sqr (- y other-y)))

(sqr r)))

;; test methods, to probe the heli state.
;; Note that we don't have a probe for radius.

;; -> Int
(define/public (for-test:x) x)
;; -> Int
(define/public (for-test:y) y)
;; -> Boolean
(define/public (for-test:selected?) selected?)
;; -> (list Int Int Boolean)
(define/public (for-test:heli-state)
(list x y selected?))

))

23

Let’s		do	it	again

• Let’s	make	the	World	into	an	object.
• We’ll	write	a	WorldState<%>	interface	and	a	
class	WorldState%	that	implements	it.

• We’ll	create	an	initial	world,	which	is	an	object	
of	class	WorldState%.

• Our	big-bang	function	will	send	messages	to	
the	world.

24

Don’t	get	agitated	about	World	vs	
WorldState.	I’ve	not	been	entirely	

consistent	about	this.	L

The	WorldState<%>	interface
(define WorldState<%>

(interface ()

; -> WorldState<%>
; GIVEN: no arguments
; RETURNS: the state of the world at the next tick
after-tick

; Integer Integer MouseEvent-> WorldState<%>
; GIVEN: a location
; RETURNS: the state of the world that should follow the
; given mouse event at the given location.
after-mouse-event

; KeyEvent -> WorldState<%>
; GIVEN: a key event
; RETURNS: the state of the world that should follow the
; given key event
after-key-event

; -> Scene
; GIVEN: a scene
; RETURNS: a scene that depicts the world
to-scene
))

25

System	Architecture

26

run

after-tick

after-key-event

after-mouse-
event

to-scene

widget

widget

widget

widget

method	calls	using	
WorldState<%>	

interface

etc.

method	calls	using	
Widget<%>	
interface

The	new	run function
; run : PosReal -> World
; GIVEN: a frame rate, in secs/tick
; EFFECT: runs an initial world at the given frame rate
; RETURNS: the final state of the world
(define (run rate)
(big-bang (initial-world)
(on-tick

(lambda (w) (send w after-tick))
rate)

(on-draw
(lambda (w) (send w to-scene)))

(on-key
(lambda (w kev)
(send w after-key-event kev)))

(on-mouse
(lambda (w mx my mev)
(send w after-mouse-event mx my mev)))))

27

Compare	this	to	the	run
function	in	slide	13.

The	class	WorldState%
;; A WorldState is a
;; (make-world-state ListOfWidget Time)

(define (make-world-state objs t)
(new WorldState% [objs objs][t t]))

(define WorldState%
(class* object% (WorldState<%>)

(init-field objs) ; ListOfWidget
(init-field t) ; Time

(super-new)

;; after-tick : -> WorldState<%>
;; Use HOF map on the Widgets in this World

(define/public (after-tick)
(make-world-state
(map
(lambda (obj) (send obj after-tick))
objs)

(+ 1 t)))

;; to-scene : -> Scene
;; Use HOF foldr on the Widgets in this World

(define/public (to-scene)
(foldr
(lambda (obj scene)
(send obj add-to-scene scene))

EMPTY-CANVAS
objs))

;; after-key-event : KeyEvent -> WorldState<%>
;; STRATEGY: Cases on kev

(define/public (after-key-event kev)
...)

28

We		define	a	function	make-
world-state	so	we	can	reuse	
the	code	from	our	previous	

version.

The	class	WorldState%	(2)
;; world-after-mouse-event
;; : Nat Nat MouseEvent -> WorldState<%>
;; STRATGY: Cases on mev
(define/public (after-mouse-event mx my mev)
(cond
[(mouse=? mev "button-down")
(world-after-button-down mx my)]
[(mouse=? mev "drag")
(world-after-drag mx my)]
[(mouse=? mev "button-up")
(world-after-button-up mx my)]
[else this]))

;; the next few functions are local functions,
;; not in the interface.

(define (world-after-button-down mx my)
(make-world-state
(map
(lambda (obj)
(send obj after-button-down mx my))
objs)

t))

(define (world-after-button-up mx my)
(make-world-state
(map
(lambda (obj)
(send obj after-button-up mx my))
objs)

t))

(define (world-after-drag mx my)
(make-world-state
(map
(lambda (obj)
(send obj after-drag mx my))
objs)

t))

))

29

Why	do	it	this	way?

• The	Widget<%>	interface	didn’t	change,	so	we	
didn’t		need		any	other	changes	in	the	code.

• Not	much	difference	in	this	example,	but	
making	the	World	into	an	object	will	become	
important	next	week.

30

Summary

• We’ve	seen	how	an	interface	can	be	used	to	
express	an	API	that	works	for	objects	of	
several	classes

• We’ve	seen	two	designs	of	a	small	example	
that	illustrate	the	use	of	interfaces.

31

Next	Steps

• Study	the	files	in	the	Examples	folder:
– 09-2-space-invaders-1.rkt
– 09-2A-space-invaders-2.rkt

• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Go	on	to	the	next	lesson

32

